A New Method for the Preparation of 2-Aryl Propionic Acids Using Low-Valent Titanium

Mariano García, Carmen del Campo, José V. Sinisterra, Emilio F. Llama*.

Department of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, Universidad Complutense, 28040 Madrid, Spain

Abstract: The addition of dihalocarbenes to arylmethylketones in the presence of low-valent titanium yields 2aryl propionic acids in acceptable yield by one pot reaction. The reaction conditions were optimized. The T_1Cl_4/L_1AlH_4 ratio is one variable that controls the selectivity of the process.

The 2-aryl propionic acids (Naproxen, Ibuprofen, Ketoprofen, etc.) have interesting pharmaceutical properties as non steroidal antiinflammatory drugs.¹ Recently we have reported a new and simple synthetic methodology to prepare these compounds, by one pot reaction.² In the present paper we report a new methodology to obtain these acids generating the dihalocarbene using low-valent titanium.³ The reduced titanium produced in this process is very efficient in the generation of dihalocarbenes. However, unfortunately, would seem to have no potential for the effective generation of monohalocarbenes (CHX:).⁴ Originally the 2-hydroxy acid 1 was expected as the reaction product. Nevertheless, initial exploratory reactions of CFCl₃ with *p-iso*-butyl acetophenone in presence of low valent titanium (Table 1) gave 2-*p-iso*-butylphenyl propionic acid with good yields depending on the molar ratio of reagents (T1Cl₄/LiAlH₄) used to generate the low-valent titanium (Scheme 1).

We can observe in Table 1 the dramatic effect on selectivity of the molar ratio T_1Cl_4/L_1AlH_4 . An excess of L_1AlH_4 favours the synthesis of the carboxylic acid. The optimum conditions were between 1/2.5 and 1/3. This fact could be explained because an excess of L_1AlH_4 decreases the generation of the titanium complex that favours the reductive coupling of the ketone to produce the olefin 3, and the hydrogenolysis of the intermediate 2-hydroxy acid 1. The reaction temperature range between -5°C and 0°C is necessary to minimize the carbonyl-coupling reactions.

Product balance^{*} by addition of chlorofluorocarbene to *p-iso*-butyl acetophenone as a function of the molar ratio of TiCl₄ to L1AlH₄.^b

TiCl ₄ /LiAlH ₄ molar ratio	% carboxylıc acid	% hydroxy acid	% olefin	Ar	Yıeld (%) ^a	Yield (%) ^b
1/0.5	12	36	40	C ₆ H ₅	78	65
1/1	20	35	35	p-ClC ₆ H ₄	70	60
1/2	46	32	20	p-MeC ₆ H ₄	68	58
1/2.5	67	10	5	<i>p-150-</i> C ₄ H ₉ C ₆ H ₄	67	60
1/3	62	0	5	6-methoxy- 2-naphthyl	62	60

a) Yields determined by integration of the reaction mixture ¹H-RMN spectrum.

b) The reaction conditions were 1 hour at -5° C. See the text for further experimental conditions

Typical experimental procedure.

A flask containing 150 ml of THF under nitrogen was cooled to -5° C and 9.5 g (0.05 mol) of TiCl₄ were carefully added over 20 minutes. A solution of 4.74 g (0.125 mol) LiAlH₄ in 30 ml THF was carefully added to the mixture over 30 minutes. The reaction mixture was cooled again, when the temperature had fallen to -5° C, 8.8 g (0.05 mol) of *p*-tsobutyl-acetophenone in 50 ml THF were added. Inmediately, 6 g (0.05 mol) of CFCl₃ were added to the mixture, and stirred at -5° C for 30 minutes. Then, the mixture was hydrolyzed with HCl diluted and was extracted with ethylic ether. The crude product was purified by flash chromatography, gave 6.2 g (60 %) of (R,S)-2-(*p*-tso-butyl-phenyl)-propionic acid. The racemic nature of the product has been determined by ¹H-NMR using 1,2-diphenyl-diaminoethane as chiral agent.⁵

References and Notes

- 1 Lombardino, G. J. Non-steroidal Antiinflamatory Drugs, Wiley Interscience. New York. 1985.
- 2. Llama, E. F.; Campo, C.; Sinisterra, J. V. Org. Prep. Proc. Inc. 1992, 24, 165.
- 3. Mukaiyama, T.; Shiono, M.; Watanabe, K.; Onaka, M. Chem. Lett. 1975, 711.
- 4. Dolbier, W. R.; Burkholder, C.R. J. Org. Chem. 1990, 55, 589.
- 5. Fulwood, R.; Parker, D. Tetrahedron Asymmetry 1992, 3, 25.

(Received in UK 16 July 1993; accepted 8 October 1993)

(R,S)-2-aryl-propionic acid yields obtained from the addition of cholorofluorocarbene several arylmethylketones.

a) Determined by integration of the ¹H-RMN spectrum of the crude mixture

b) Isolated product